Title: | Estimates of Standard Errors for Risk and Performance Measures |
---|---|
Description: | Estimates of standard errors of popular risk and performance measures for asset or portfolio returns using methods as described in Chen and Martin (2021) <doi:10.21314/JOR.2020.446>. |
Authors: | Anthony Christidis <[email protected]>, Xin Chen <[email protected]> |
Maintainer: | Anthony Christidis <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.2.5 |
Built: | 2025-01-30 03:52:04 UTC |
Source: | https://github.com/anthonychristidis/rpese |
DSR.SE
computes the standard error of the downside Sharpe ratio of the returns.
DSR.SE( data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
DSR.SE( data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
rf |
Risk free rate. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches DSR.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches DSR.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
ES.SE
computes the standard error of the expected shortfall of the returns.
ES.SE( data, p = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
ES.SE( data, p = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
p |
Confidence level for calculation. Default value is p = 0.95. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Xin Chen, [email protected]
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ES.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ES.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
ESratio.SE
computes the standard error of the expected shortfall ratio of the returns.
ESratio.SE( data, alpha = 0.1, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
ESratio.SE( data, alpha = 0.1, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
alpha |
Lower tail probability. |
rf |
Risk-free interest rate. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ESratio.SE(edhec, se.method=c("IFiid","IFcorAdapt"), cleanOutliers=FALSE, fitting.method=c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ESratio.SE(edhec, se.method=c("IFiid","IFcorAdapt"), cleanOutliers=FALSE, fitting.method=c("Exponential", "Gamma")[1])
EstimatorSE
computes the standard error for specified risk and performance measures.
EstimatorSE( data, estimator.fun = c("DSR", "ES", "ESratio", "LPM", "Mean", "OmegaRatio", "RachevRatio", "robMean", "SD", "SemiSD", "SR", "SoR", "VaR", "VaRratio")[1], se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, a = 0.3, b = 0.7, return.coef = FALSE, ... )
EstimatorSE( data, estimator.fun = c("DSR", "ES", "ESratio", "LPM", "Mean", "OmegaRatio", "RachevRatio", "robMean", "SD", "SemiSD", "SR", "SoR", "VaR", "VaRratio")[1], se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, a = 0.3, b = 0.7, return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
estimator.fun |
Risk or performance measure to compute estimates of standard errors. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
a |
First adaptive method parameter. |
b |
Second adaptive method parameter. |
return.coef |
Boolean variable to indicate whether the coefficients of the Exponential or Gamma fit are returned. Default is FALSE. |
... |
Additional parameters. |
A vector standard error estimates.
Xin Chen, [email protected]
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the three influence functions based approaches EstimatorSE(edhec[,"CA"], se.method = c("IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the three influence functions based approaches EstimatorSE(edhec[,"CA"], se.method = c("IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
LPM.SE
computes the standard error of the LPM of the returns.
LPM.SE( data, const = 0, order = 1, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
LPM.SE( data, const = 0, order = 1, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
const |
Constant threshold. |
order |
Order for the lower partial moment (should be 1 or 2). |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Xin Chen, [email protected]
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches LPM.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches LPM.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
Mean.SE
computes the standard error of the mean of the returns.
Mean.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
Mean.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches Mean.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches Mean.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
OmegaRatio.SE
computes the standard error of the Omega ratio of the returns.
OmegaRatio.SE( data, const = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
OmegaRatio.SE( data, const = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
const |
Constant threshold. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches OmegaRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt")[1], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches OmegaRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt")[1], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
printSE
returns a formatted output from standard error functions from RPESE.
printSE(SE.data, round.digit = 3, round.out = TRUE)
printSE(SE.data, round.digit = 3, round.out = TRUE)
SE.data |
Standard error estimates output from RPESE functions. |
round.digit |
Number of digits for rounding. |
round.out |
Round data (TRUE) with round.digit number of digits. Default is TRUE. |
A data frame with formatted output from standard error functions from RPESE
.
Xin Chen, [email protected]
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ES.out <- ES.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1]) # Print the output printSE(ES.out)
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches ES.out <- ES.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1]) # Print the output printSE(ES.out)
RachevRatio.SE
computes the standard error of the Rachev ratio of the returns.
RachevRatio.SE( data, alpha = 0.1, beta = 0.1, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
RachevRatio.SE( data, alpha = 0.1, beta = 0.1, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
alpha |
Lower tail probability. |
beta |
Upper tail probability. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches RachevRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches RachevRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
robMean.SE
computes the standard error of the robust location (mean) M-estimator of the returns.
robMean.SE( data, family = c("mopt", "opt", "bisquare")[1], eff = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
robMean.SE( data, family = c("mopt", "opt", "bisquare")[1], eff = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
family |
Family for robust m-estimator of location. Must be one of "mopt" (default), "opt" or "bisquare". |
eff |
Tuning parameter for the normal distribution efficiency. Default is 0.99. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches robMean.SE(edhec, se.method = c("IFiid","IFcorAdapt"), fitting.method = c("Exponential", "Gamma")[1], family = "mopt", eff = 0.95)
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches robMean.SE(edhec, se.method = c("IFiid","IFcorAdapt"), fitting.method = c("Exponential", "Gamma")[1], family = "mopt", eff = 0.95)
SD.SE
computes the standard error of the standard deviation of the returns.
SD.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
SD.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SD.SE(edhec, se.method = c("IFiid","IFcor","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SD.SE(edhec, se.method = c("IFiid","IFcor","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
SemiSD.SE
computes the standard error of the SSD of the returns.
SemiSD.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
SemiSD.SE( data, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SemiSD.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SemiSD.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
SoR.SE
computes the standard error of the Sortino ratio of the returns.
SoR.SE( data, const = 0, threshold = c("mean", "const")[1], se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor")[1], return.coef = FALSE, ... )
SoR.SE( data, const = 0, threshold = c("mean", "const")[1], se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
const |
Minimum acceptable return for threshold. |
threshold |
Parameter to determine whether we use a "mean" or "const" threshold. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SoR.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SoR.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
SR.SE
computes the standard error of the Sharpe ratio of the returns.
SR.SE( data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
SR.SE( data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
rf |
Risk free rate. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SR.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches SR.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
VaR.SE
computes the standard error of the value-at-risk of the returns.
VaR.SE( data = NULL, alpha = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
VaR.SE( data = NULL, alpha = 0.95, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
alpha |
Confidence level for calculation. Default is alpha=0.95. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches VaR.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches VaR.SE(edhec, se.method = c("IFiid","IFcor"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
VaRratio.SE
computes the standard error of the value-at-risk ratio of the returns.
VaRratio.SE( data, alpha = 0.1, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
VaRratio.SE( data, alpha = 0.1, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE, ... )
data |
Data of returns for one or multiple assets or portfolios. |
alpha |
The tail probability of interest. |
rf |
Risk-free interest rate. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
A vector or a list depending on se.method
.
Anthony-Alexander Christidis, [email protected]
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches VaRratio.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])
# Loading data data(edhec, package = "PerformanceAnalytics") # Changing the data colnames names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF") # Computing the standard errors for # the two influence functions based approaches VaRratio.SE(edhec, se.method = c("IFiid","IFcorAdapt"), cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])